Schafer Corporation System Engineering and Integration Division and The Boeing Company Phantom Works September 13, 2004 ## **Agenda** ## Objectives - Influence of Vision for Space Exploration - SuperSystem analogies - Innovation - Summary of objectives #### Architecture - Concept overview - Features - Modeling, simulation, analysis - Issues ## Objectives of the President's Vision - Implement a <u>sustained</u> and <u>affordable</u> human and robotic program - Extend human presence across the solar system - Develop the innovative technologies, knowledge, and infrastructures to explore and support decisions - Promote international and commercial participation in exploration - Affordability - Predictability - Absolute vs. relative measures of cost - Cost analysis vs. economic analysis - Marginal efficiency of investment Our Architecture Objectives Are Based on the President's Vision A Renewed Spirit of Discovery ## Architectural SuperSystem Analogies - Commercial aircraft transportation - Hubs, spokes, routes - Platforms, payloads, crew, cargo - Figures of merit and measures of effectiveness (ASM, RPM, Load Factor, CASM, Stage Length) - Platform trades: RJ/737/747 vs. HSCT vs. A380 - Military campaign logistics - Strategic operational and tactical levels of support - Deployment of humans, platforms, resources to accomplish short and extended-duration missions - Sustainability and ISRU must be considered SuperSystem Networks Emerge Larger and More Capable Than Individual Systems ## Architectural Development and Evaluation - Innovation Technology infusion and technology harvest (spin-in) - - Design, Schedule, Cost - Identify What is Important and What is Not - Focus on Drivers Analysis, Test, Technology Investment - Evaluation Against Traditional and Non-Traditional FOMs We Leverage DoD Program Experience and Methodologies # **Objectives** | Objectives | Architectural Implications and Choices | |--|--| | Establish a robust,
sustainable program
of exploration | Open Architecture for spiral upgrades Redundant/complementary H/W and systems with overlapping functionality Pre-positioning of supplies Support human/robotic missions with cost effective transport Design for repair/maintenance Separate Crew and Cargo Use lessons learned from DoD | | Enable a self-
sustaining market-
based space
economy | Widen competition by increasing opportunities within a system of standards for packaging, power, thermal management, and communications to create economic diversity (including international participation) Adapt and "Spin-in" commercial technologies for wider application. Flexible logistics | | Foster U.S. national defense and economic security | Frequent, assured access to space using variety of ELVs Increase international participation in exploration diverts intellectual resources from potentially destructive pursuits US development of robotics Modularity [compartmentalization] for flexible adaptation to new or emerging security objectives | Our Objectives Result in Architectural Implications and Choices # **Architecture Concept Overview** | Architectural Nodes | Capabilities/Elements | | | | | | | | | | |--------------------------------|---|--|--|--|--|--|--|--|--|--| | Earth | Test & Production, Launch, Mission Control/Support | | | | | | | | | | | LEO Gateway
(Initially ISS) | Module Docking, Refueling, Stockpiles, Safe Haven, Medical, Robotic Services, Micro Gravity Science | | | | | | | | | | | L1 Gateway (Orbit L1 Point) | Module Docking, Refueling, Stockpiles, Safe Haven, Medical, Robotic Services, ComSat/NavSat, Sensor Network | | | | | | | | | | | Lunar (Evolving) | Long Term Habitat, In-Situ Processing (Feasibility), Long-Term Science, Extensible to Mars | | | | | | | | | | | Mars & Beyond | Long Term Habitat, In-Situ Utilization, Long-Term Science | | | | | | | | | | Gateway Concept Includes Architecture Nodes and Transport Modes #### **Architecture Features** | Transport Modes | Human
(Prioritize Safety) | Cargo
(Optimize For Cost/Risk) | |--|--|--| | Earth to LEO
(Most Costly) | Human-Rated ELV Systems; CEV-
Mod-E (Capsule + Abort Tower) | Existing ELVs; Distribute Risk; Fully Autonomous, Standardized Packaging | | LEO to/from L1
Gateway to/from
Lunar Orbit | CEV-Mod-L (Capsule, Crew Habitat,
Resource Module, Propulsion) | Efficient (e.g. Electric Propulsion) Convoys to achieve Stockpiles | | Orbit to/from Surface
(Moon /Mars) | Lander, Rover, Hopper, Ascent Stage | Autonomous, Robotic Procedures
In-Situ Fuel Source | | Gateway (LEO or L1)
to/from Interplanetary | CEV-Mod-I (Capsule, Crew Habitat,
Resource Module, Power, Extended
Propulsion) | Efficient (e.g. Electric Propulsion) Prepositioning of Supplies/Backup | | LEO to Earth
(Highest Risk) | CEV-Mod-E (Capsule); Position
Backups in LEO | Adapt Proven, e.g. Discoverer
Capsules, for Specimen Return
(Ballistic Recovery) | Platform/Vehicle Designs Are Driven by Transport Mode and Payload ## **Architectural Modeling and Analysis - Innovation** - Modeling and simulation of architectures - Traditional aero-performance & orbital mechanics based - Industrial represent architecture process flows - Analyze flow of vehicles/platforms, crew, and cargo along nodal network - Similar to transportation models, warehouse management, inventory optimization - Information Architecture, behavior modeling - Based on Systems Engineering methods appropriate for designing information-intensive systems - A single system definition that supports requirements definition, system development, testing, verification, and fielding/operation of the system - Recognize and stimulate contributions of <u>individuals</u> - Promote innovative techniques Our Team and Individual Experiences Provide Innovation ## **Cost Modeling and Analysis** - Objective - Estimate architecture costs and CEV spiral 1 costs - Make early use of cost estimates in evaluation of architecture exploration and refinement - Investigate sensitivities and drivers - Perform bi-directional economic impact analysis - Effects of architectural element choices and performance on architecture costs - Effects of architecture element choices on sustainability of program and economic/industrial base - Philosophy - Recognize predictability of architecture costs - Understand importance of relative vs. absolute costs - Plans - Expand cost modeling toolset with resources, data, benchmarking from Boeing and NASA sources - Perform cost/performance analysis as early as possible Cost Modeling and Analysis is an Important Part of Our CE&R Program # **Issues - Enhancing Program Success** | Historical Challenges | Architectural Features Motivated to Respond to Difficulties | | | | | | | | | |--|---|--|--|--|--|--|--|--|--| | Program Funding
Fluctuations | Incremental approach to development. Spiral Development and use/qualification of commercially components to achieve capability | | | | | | | | | | Program Redirection –
Political Changes | Develop an adaptable architecture composed of overlapping functionality to allow system flexibility and evolution | | | | | | | | | | Instability of International
Partnerships | Segment missions based on critical US economic and security requirements and non-critical items to international participation | | | | | | | | | | Volatile Science
Objectives | Standard equipment interfaces and payload accommodations, use of science peer review process modeled on Hubble Space Telescope | | | | | | | | | | Public program support diminishing with time | Provide inspiration through regular significant events, establish broad contractual base, broad involvement and extensive education | | | | | | | | | | Lack of predictable access to exploration data / results | Distributed nodes, vehicles, and sensors paired with high bandwidth data paths to provide abundant amounts of data | | | | | | | | | Our Architectural Choices Apply Lessons Learned from Historical Challenges #### Issues – Focus Areas for CE&R - Architectural analysis and evaluation - Apply more comprehensive models, and additional FOMs - Investigate performance and robustness with non-traditional models - Perform excursions around concept, and refinement - Investigate sensitivities for a variety of missions, campaigns - Architectural modeling and simulation - Pursue traditional and non-traditional means to predict and assess - Support SBA activities and workshops - Apply and sustain M&S throughout life cycle - Virtual life cycle product validation prior to production - Sharing of models and data among industry and government stakeholders - Technology evaluation - Investigate benefits from H&RT programs, other sources - Generate technology infusion plan - Risk assessment - Update assessments and mitigations from pre-award activities These Focus Areas Will Govern Our CA1 Activities ## Summary - Described Objectives, Architecture, and Issues - Our concept is consistent with the President's Vision - We have developed our CE&R execution plan and are committed to the success of the program and look forward to working with NASA | | SEP | | | | | 0 | СТ | | | - 1 | NON | / | | | DI | EC | | | | 1AL | ١ | | | F | EE | 3 | | M | AR | | | |-----------------------------|-----------------------------|---------------------------|---|--------------------|-----------------------------|------------|-----|----|----------------------|-------|-------------|------|----------------------|-----|-----|-------------|------------------------------|----|---|-----|----|-------------|------|---|---------|---|-----------------------|----|----|----|----| | | 6 | | 13 | 20 | 27 | 4 | 11 | 18 | 25 | 1 | 8 | 15 | 22 | 29 | 6 | 13 | 20 | 27 | 3 | 10 | 17 | 24 | 31 | 7 | 14 | 2 | 1 28 | 7 | 14 | 21 | 28 | | KICI
8 | KOI
SEF | PT | AN
13
REV | IAL'
SEI
IEW | YSIS
PT
/ OF
SIS P | PLA
CEV | | | DATE
ANA
5 OCT | LYSIS |)
CEV | 30 N | MID-T
REV
OV-3 | DEC | | ANA
10 E | /IEW
NAR 8
NLYS
DEC | CE | | | | DATI
ANA | LYSI | S | | | FINA
REVI
22-25 | EW | | | | | 1 M | ION. | J. | Y RI | | | | | | | | | | | | DEC | | | | | | | | | | ľ | | | | | | | | 3 Al
4 Cl
5 M
6 FI | NAL
EV I
IIDT
INAI | LYS
DEV
ERM
L RI | NCEI
IS, T
IL PI
II RE
EVIE
EPOI | RAI
LAN
VIE | | | 2 3 | | | | 1
2
3 | | | 5 | | 1 2 3 | | | | 2 | | | | | 1 2 3 4 | | 6 | | 7 | | |